

Ciências ULisboa

Faculdade de Ciências da Universidade de Lisboa

Eng. Energy & Environment

Sustainable Mobility

Topics	#	Contents				
Basic concepts and	1	Transportation system; Transports classification; historical evolution;				
definitions	2	Introduction to "sustainability and metrics"				
	3	Energy conversions, primary energy, final energy, useful energy; Minimum energy and emissions in mobility,				
	4	ropulsion technologies, internal combustion engines, electric motors, fu ells, efficiencies				
Characterization of mobility patterns	5	Surveys; Statistics; transport sector share energy & emissions;				
Sustainability – Environmental dimension	6	Development of "sustainability and Metrics"				
Air quality	7	World Health Organization, Directives, standards for emissions, air quality index				
	8	Air quality networks and pollutants covered - local and global emissions				
Emission	9	Emission inventory models, micro to macro, motor vehicle dynamics				
inventories	10	COPERT 5 fleet model				

Carla Silva <u>camsilva@fc.ul.pt</u> TOPIC#1 Basic concepts and Definitions in "Sustainable Mobility"

Topics	#	Contents
Application of metrics of Sustainable mobility	11	Comparing Lisbon and Oporto mobility Screening mobility patterns in University campus
Life cycle analysis in	12	Life cycle analysis
transportation systems	13	Water, land use, resources scarcity and carbon footprint
	14	Carbon footprint in transport
	15	Carbon footprint applied to electric versus diesel technology
Disruptions & consequences	16	COVID19 impact overview

TOPIC #I

- When addressing "Sustainable Mobility" it is common to ulletear some terms like:
- \checkmark Transportation system;
- \checkmark Logistics;
- \checkmark ITS;
- \checkmark Commuting;
- \checkmark Intermodal;
- ✓ Seamless;

- ✓ Automous vehicles;
- \checkmark Eletric vehicles;
- Biofuels; \checkmark
- \checkmark Energy consumption;
- \checkmark CO₂ emissions;
- \checkmark NOx emissions;

PM emissions.

• A transportation system is an infrastructure that serves to move people and goods.

• A transportation system is an infrastructure that serves to move people and goods **efficiently**.

Transportation system composition

~	

Ciências

ULisboa

(carriers)

Conveyances (vehicles) used to move passengers or freight. Mobile elements of transportation.

Infrastructures

Modes

Physical support of transport modes, such as routes and terminals. Fixed elements of transportation.

Networks

System of linked locations (nodes). Functional and spatial organization of transportation.

Flows

Movements of people, freight and information over their network. Flows have origins, intermediary locations and destinations.

NODES Origin – Destination matrix

FIIE	Home Insert	Page Layou	t ronn	ulas Data	Review v	new Develop	per ACKOE	AI Y Ieli Ine	e what you wal	11 10 00							sign in	A+ snare
Ê	X Cut Calib	bri -	11 -	A A =	≡ ≫	🚏 Wrap Text	Ger	eral	•		Normal	Bad	Good	<i>.</i>	🖶 🖹 Ϊ	∑ AutoSur	" * 🛃 🏅) C
Paste	Copy •			- A - = =	= = = =	Herae & C	enter - ¢	- 0/ 9 - 0 .0	Conditiona	I Format as	Neutral	Calculatio	Check	Cell	Insert Delete Forma	t 🔶 =:	Sort & Find	18.
~	💞 Format Painter					E Merge a c	,ciitei 🌐	70 - 00 →.	Formatting	 Table * 				· ·	· · ·	Clear *	Filter * Sele	ct -
	Clipboard 5	For	nt	Gi .	Align	nment	G.	Number	Gi I			Styles			Cells		Editing	^
R6C	R6C6 \cdot \vdots \times \checkmark f_x 0																	
	1 (1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	1.
1	NAME		2	ward no 1	ward no 2	ward no 3	ward no 4	ward no 5 w		ard no 7	ward no 8	ward no 9	ward no 10	ward no 11	ward no 12 w	ard no 13	ward no 14	ward r
2			CODE		2	3	4	5		-	/ 8	3 9	10	11	12	13	14	
3	ward no 1			0	0	0	0	0	0	() (0 0	0	0	0	0	0	
4	ward no 2		2	0	0	0	0	0	0	() (0 0	0	0	0	0	0	
5	ward no 3			0	0	0	0	0	0				0	0	0	0	0	
6	ward no 4		4	0	0	0	0	0	0				0	0	0	0	0	
7	ward no 5		5	0	0	0	0	0	0	(0 0	0	0	0	1	0	
8	ward no 6		6	0	0	0	0	0	0			$\frac{1}{2}$		0	0	0	0	
9	ward no 7		7	0	0	0	0	0	0					0	0	0	0	
10	ward no 8		, 8	0	0	0	0	0	0				0	0	0	0	0	
11	ward no 9	ror	nä	0	0	0	0	0	0				0	0	0	0	0	
12	ward no 10		10	0	0	0	0	0		\sim	- F		0	0	0	0	0	
13	ward no 10		11	0	0	0	0	1	0				0	0	0	1	0	
14	ward no 12		12	0	0	0	0		0				0	0	0	0	0	
15	ward no 12		12	0	0	0	0	0	0				0	0	0	0	0	
16	ward no 14		13	0	0	0	0	0	0				0	0	0	0	0	
17	ward no 15		14	0	0	0		0					1		0	0	0	
10	ward no 16		15	0	0	0	- Ine	Origin	Destin	ation	matrix	should	have tr	iree thir	ngs. 💾	0	0	
10	ward no 17		10	0	0	0	1 1	Jamo of	locat	ion					0	0		
19	ward no 19		17	0	0	0	- '''	vanie OI	LUCAL	1011.					0	0	0	<u> </u>
20	waru no 18		18	0	0	0	2.0	ode of F	Each L	ocatio	n.				0	0	0	<u> </u>
21	agastheeswaram		19	0	0	0				- Callo					0	0	0	
22	anchukootuvilai		20	0	0	0	_ 3.C	ompileo	d entri	es froi	n Surv	ey.			0	0	0	
23	anjugramam		21	0	0	0		•				-			0	0	0	
24	arogyapuram		22	0	0	0	0	0	0	() (0 0	0	1	0	0	0	
25	azhagappapuram		23	0	0	0	0	0	0	() (0 0	0	0	0	0	0	
	SANDEEP S	heet1	(+)									•			-		-	•
Ready	Circular References: R39C49	1	0													■		+ 115%

Prepare the Origin Destination Matrix

NODES Origin – Destination matrix

e.g Info n^{er} trips per day (flows and nodes)

			SUM			
		А	В	С	D	
ORIGIN	А		65	28	28	121
	В	69		12	83	164
	С	100	60		217	377
	D	86	127	63		276
SUM		255	252	103	328	938

Ciências ULisboa Transportation system example

Carla Silva camsilva@fc.ul.pt TOPIC#1 Basic concepts and Definitions in "Sustainable Mobility"

https://www.flightradar24.com/38.72,-9.13/2

Transportation system example

Ciências ULisboa

- Transportation...is moving people or goods from an origin to a destination;
- Logistics....is management of flows between origin and destination, i.e. optimization of modes, routes and schedules with a target objective. For example:

FastnessCostFuel consumptionComfortSecurity

C Cièncias ULisboa Transportation system Logistics

C Ciências ULisboa Transportation system Logistics

- Qingdao, China
- Seoul, South Korean
- Setar, Malaysia
- Dhaka, Bangladesh

• ... exhange information.....

ITS – Intelligent Transportation System

 Repetitive movement between an origin A and destination B, on a daily basis (usually weekdays).

Origin

Destination

home

Intermodal transportation

Wichtigste Pendlerströme zwischen den Gemeinden, 2014

OBJECTIVE: MAXIMUM EFFICIENCY AND INTEGRATION

Mandatory:

- designed to minimize transfer time between modes;
- designed to minimize waiting times;
- tariff connection with a single ticket, even if operated by different carriers;
- a very good information technology connection

- Intelligent Transport systems addressing first and last mile connectivity;
- Transparency and Accountability across all the stakeholders;
- Transport Safety;
- Cost effective on-demand services with maximum asset utilization.

Seamless transportation system

Carla Silva camsilva@fc.ul.pt TOPIC#1 Basic concepts and Definitions in "Sustainable Mobility"

- Can be classified by:
- ✓ Modes;
- ✓ Function;
- ✓ Geographical coverage;
- ✓ Ownership;
- ✓ Automation level;
- ✓ Tecnhology;

- ✓ Fuel/energy source;
- ✓ Eletric vehicles;
- ✓ Biofuels;
- ✓ Emission standard.

• air, road, rail, maritime /passenger or goods carriers

Soft modes (or active modes) /passenger or goods carriers

Passengers and freight (goods)

• National / International

- Public or private
- Personal or shared

TRANSPORTATION BY AUTOMATION LEVEL

Levels of automation

- National Highway Traffic Safety administration (NHTSA);
- Society of Automotive Engineers (SAE).

TRANSPORTATION BY AUTOMATION LEVEL

SAE J3016[™] LEVELS OF DRIVING AUTOMATION

TRANSPORTATION BY AUTOMATION LEVEL

forward collision avoidance - adaptive cruise control

https://www.youtube.com/watch?v=GInSPWZRFRM

SAE 1

SAE 2

Ciências ULisboa TRANSPORTATION BY AUTOMATION LEVEL

Example full automation non-road

Heathrow Personal Rapid Transit system 2011

18 low-energy, driverless vehicles can each carry four passengers and their luggage.(Ultra PRT | www.ultraprt.com.)

Carla Silva camsilva@fc.ul.pt TOPIC#1 Basic concepts and Definitions in "Sustainable Mobility"

• Pure electric (battery EV)

• Plug-in Hybrid (PHEV)

• Hybrid (HEV)

• Conventional (ICEV)

- Diesel
- Gasoline
- biodiesel
- bioethanol
- GPL
- Natural gas

Monofuel

Bi-fuel (2 main tanks, e.g. LPG & gasoline)

Dual-fuel (main fuel tank & small tank start fuel)

Flex-fuel (1 main tank, both fuel mixed)

TRANSPORTATION BY EMISSION STANDARD

• Pre-Euro < 1992

Ciências ULisboa

- Euro I
- Euro II
- Euro III
- Euro IV
- Euro V
- Euro VI > 2014

Less NOx

Less PM

e.g. *bike-sharing* individual passenger transportation, public, road (motorized in case of eletric bikes)

e.g. táxi individual motorized

Uber individual motorized

e.g. *car-sharing* individual, road motorized

e.g. bike-sharing individual, road motorized/nonmotorized

shutterstock.com • 1416827321

e.g. bus colective, public, road, motorized

Speed/motorization

History.....and...future

Viajar através do tempo

Da carroça ao automóvel, como nos deslocámos de A para B ao longo da história.

escuro e à pele macilenta

History.....and...future

Lisbon - Porto

~ Year 1859	~ Year 1864	~ Year 2000	~ Year 2016
	1 st train		
7 days	14h	2h35 Alfa Pendular	<1h Airplane

Carla Silva camsilva@fc.ul.pt TOPIC#1 Basic concepts and Definitions in "Sustainable Mobility"

New York on the 1800's

Lisbon on the 1800's, CARRIS carriage

Lisbon Av. 24 Julho 1912, CARRIS electric tram

Walk....always....Energy????

Walk....always....Energy????

Stricker emission standards

C Ciências History.....and...future - Emissions

Previously...e.g. 1800....1970????

History.....and...future - Emissions

Previously...e.g. 1800....1989????

 $CO_2 UK$

Previously...e.g. 1800....1970????

Substance	Inhaled air (%)	Exhaled air (%)	Explanation
Nitrogen (N ₂)	78	75	Not used
Oxygen (O ₂)	21	16	Used in respiration
Carbon dioxide (CO ₂)	0.04	4	Produced in respiration
Inert (e.g. argon)	0.9	0.9	Not used
Volatile organic compounds (VOC, H and C and O)	Variable, depend outside air quality	Variable depends on outside air quality	Not used
Water (variable)	variable	Typical 4	Produced in respiration
不			

History.....and...future - Emissions

History.....and...future - Energy

History.....and...future - Emissions Ciências ULisboa

137

Carbon Intensity of Travel: g CO2e/pkm

Large Car (15 MPG) 41 Long Flight (business) Medium Car (25 MPG) 28 Average Local Bus (US) 16 142 Motorbike (50 MPG) 23 110 Long Flight (economy) 114 Small Car (35 MPG) 22 98 Electric Car (US grid) 36 Short Flight (economy) 98 Heavy Rail (US) 23 Hybrid Car (45 MPG) 28 Scooter (80 MPG) 20Coach (US) Metro (NYC) 47 Electric Car (Solar) 36 School Bus (US) 17 Eurostar Rail (France) 17

87 92 76 14 69 67 13 Manufacturing Direct fuel Indirect fuel

150

200

250

300

228

26

27

45

242

20

21

18

Slow Efficient (food-energy) Low CO2 (\sim 0.01 g/pkm)

Note: All figures are grams of carbon dioxide equivalents per passenger kilometre (g CO2e/pkm). Figures include direct fuel emissions from combustion, indirect fuel emissions from production and vehicle manufacturing emissions. Average loading is assumed for each mode of travel, 1.6 for all cars and 1 for motorbikes. Miles per gallon (MPG) is on road efficiency in US gallons. No radiative forcing multiplier is used for air travel. The electric car is assumed to achieve 200 Wh/km.

50

100

0

Sources: DEFRA, EIA, EPA, GREET 1.8, Chester & Horvath

Consider the transportation system in the figure next slide. With the OD matrices regarding n^{er} of trips and n^{er} trips per day (flows) and regarding road distances, estimate, for the System:

- Number of links, nodes and carriers;
- Number of total trips per week;
- Energy consumption; in MJ/week;
- CO₂ emissions; in g/week.

Ciências OPEN QUESTION

n^{er} km per link (distance between nodes)

	DESTINATION			SUM		
		А	В	С	D	
ORIGIN	Α		15	10	10	35
	В	15		5	2	22
	С	10	5		10	25
	D	10	2	10		22
SU	Μ					

n^{er} trips per day (flows)

	DESTINATION			SUM		
		А	В	С	D	
ORIGIN	А		65	28	28	121
	В	69		12	83	164
	С	100	60		217	377
	D	86	127	63		276
SU	Μ	255	252	103	328	938

Ciências ULisboa

Faculdade de Ciências da Universidade de Lisboa